International Electronic Journal of Pure and Applied Mathematics

Volume 1 No. 3 2010, 339-344

ON THE CYCLE INDICES OF FROBENIOUS GROUPS

Michael Munywoki¹[§], Ireri Kamuti², Benard Kivunge³

¹Department of Mathematics and Physics Mombasa Polytechnic University College P.O. Box 90420-80100, Mombasa, KENYA e-mail: mmunywoki@mombasapoly.ac.ke ^{2,3}Department of Mathematics Kenyatta University P.O. Box 43844-00100, Nairobi, KENYA ²e-mail: inkamutidr@yahoo.com ³e-mail: bkivunge2004@yahoo.com

Abstract: There are several very useful formulas, which give the cycle indices of the binary operation of the sum, product, composition and power group of M and H in terms of cycle indices of M and H. One very useful binary operation on groups, which has not been exploited, is the semidirect product.

Suppose $G = M \rtimes H$, a semi direct product; the question is: how can we express the cycle index of G in terms of the cycle indices of M and H? This work partially answers this question by considering the cycle indices of some particularly semidirect product groups; namely – Frobenious groups.

AMS Subject Classification: —???— Key Words: cycle indices, Frobenious groups

1. Introduction

A Frobenius group is a group G acting on a set X, transitively, in such a way that the stabilizer H of a point is nontrivial, but only the identity fixes two or more points. That means that $H \cap (xHx^{-1}) = \{1\}$, if $x \in G \setminus H$. Define $M^* = G \setminus \bigcup \{xHx^{-1} : x \in G\}$, the set of all elements in G having no fixed points. Then $M = M^* \cup \{1\}$ is a normal subgroup of G. Furthermore $G = M \rtimes H$.

Received: June 9, 2010

© 2010 Academic Publications

[§]Correspondence author

If M and H are permutation groups with cycle indices Z_M and Z_H respectively and if * is some binary operation on permutation groups then a fundamental problem is the determination of a formula for Z_{M*H} in terms of Z_M and Z_H . To this end a number of results have already been obtained as discussed in [4], [5], [7].

Kamuti [11], gave a method for deriving the cycle index of Frobenious groups. In this work we give an alternative method of deriving the same and also express the cycle index of G in terms of cycle indices of M and H.

2. Preliminary Definitions and Results

Let X be a set and G be a group. We say that G acts on the left on X if for each $x \in G$ and each $x \in X$ there corresponds a unique element $gx \in X$ such that for each $x \in X$ and $g_1, g_2 \in G$:

(i) $(g_1g_2)x = g_1(g_2x).$

(*ii*) For any $x \in X$, 1x = x where 1 is the identity in G.

Similarly a group acts on a set on the right by writing g on the right.

If a finite group G acts on a set S with n elements, each $x \in G$ corresponds to a permutation σ of S, which can be written uniquely as a product of disjoint cycles. If σ has α_1 cycles of length 1, α_2 cycles of length 2, ..., α_n cycles of length n, we say that σ and hence x has cycle type $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$

Theorem 2.1. (see [2]) Let the cycle type of a permutation σ be (j_1, j_2, \ldots, j_n) , then the cycle type of σ^k is $\left(j_{1/(1,k)}^{(1,k)}, j_{1/(2,k)}^{(2,k)}, \ldots, j_{1/(n,k)}^{(n,k)}\right)$.

Remark 2.2. If a finite group G acts on a set X, the permutation σ corresponding to $g \in G$ has cycles of lengths less than or equal to the order of g.

If a finite group G acts on a set X, |X| = n and $g \in G$ has cycle type (j_1, j_2, \ldots, j_n) , we define the monomial of g to be $\operatorname{mon}(g) = \prod_k t_k^{j_k}$, where t_k , $k = 1, 2, \ldots, n$ are distinct commuting indeterminates. The cycle index of the action of G on X is the polynomial (say over the rational field \mathbb{Q}) in t_1, t_2, \ldots, t_n given by $Z(G) = |G|^{-1} \sum_{g \in G} \operatorname{mon}(g)$. If G has conjugacy classes K_1, K_2, \ldots, K_m with $g_i \in K_i$, then $Z(G) = |G|^{-1} \sum_{i=1}^m |K_i| \operatorname{mon}(g)$.

An element $g \in G$ generates the group G and say g is a generator for G if $G = \langle g \rangle$ i.e $G = \{g^n : n \in \mathbb{Z}\}$. Let G act on the set X and $x \in X$, then the *orbit* of x is given by $Orb_G(x) = \{gx : g \in G\}$. The action of a group G on the set X is said to be *transitive* if for each pair $x, y \in X$ there exists $g \in G$ such that gx = y;

340

in other words if the action of G on X has only one orbit. The *stabilizer* of x in G is the set $\operatorname{Stab}_G(x) = \{g \in G \ gx = x\}$. The stabilizer forms a subgroup of G called the *isotropy* group of x in G denoted by G_x

Theorem 2.3. (see [13, p. 76]) Let G be a finite group acting transitively on a set X. Let $x \in X$ and $H = Stab_G(x)$. Then the action of G on X is equivalent to the action by multiplication on the set of cosets of H in G.

If G is a group with subgroups H and K, then G is said to be the semidirect product of K by H denoted by $G = K \rtimes H$ if:

- (1) H < G and $K \triangleleft G$;
- (2) HK = G;
- (3) $H \cap K = \{1\}.$

If G act on the set X and $g \in G$, then $Fix(g) = \{x : gx = x\}$.

Theorem 2.4. (see [8]) Let G be a finite transitive permutation group acting on the cosets of it's subgroup H. If $g \in G$ and [G:H] = n then $\frac{\varphi(g)}{n} = \frac{|C^g \cap H|}{|C^g|}$

Theorem 2.5. (see [2]) Let g be a permutation with cycle type α_1 , α_2 , α_3 , ..., α_n , then:

(i) The number $\varphi(g^l)$ of 1-cycles in g^l is $\sum_{i/l} i\alpha_i$;

(ii)
$$\alpha_l = \frac{1}{l} \sum_{i/l} \varphi\left(g^{l/i}\right) \mu(i)$$

3. Main Results: The Cycle Index of Frobenious Groups

If G is a Frobenious group, then the action of G on X is equivalent to the action of G on S = G/H, the set of left cosets of G, the action being by left multiplication. Furthermore |S| = |G/H| = |M|.

Now, the cycle index of G is derived as follows. Let $x \in G$, then either $x \in M$ or else x is in a conjugate of H. So it's enough to determine mon(x) in Case I $x \in M$ and in Case II $x \in H$.

Case I. If $x \neq 1$ is in M, then $\varphi(x) = 0$. Since M consists of 1 and all elements of G with no fixed points, $|C^* \cap H| = 0$.

Now if $x \neq 1$ is in M, then $\alpha_l = 0$ if $l \neq |x|$ where α_l is the number of cycles of length l in x and if l = |x|, then $\alpha_l = \frac{1}{l} \sum_{i/l} \varphi(x^{l/i}) \mu(i)$. But $\varphi(x^{l/i}) = 0$, unless

M. Munywoki, I. Kamuti, B. Kivunge

i = 1, in which case $\varphi(x^l) = \varphi(1) = |M|$. Therefore since l = |x|, then $\alpha_l = \frac{|M|}{|x|}$ and $\operatorname{mon}(x) = t_{|x|}^{|M|/|x|}$. If x = 1, then $\varphi(x) = |M|$ and $\operatorname{mon}(x) = t_1^{|M|}$. Thus elements of M contribute $\frac{1}{|G|} \sum \left\{ t_{|x|}^{|M|/|x|} : x \in M \right\}$ to the cycle index of G.

Case II. If x = 1, $\varphi(x) = \varphi(1) = |M|$ and $\operatorname{mon}(x) = t_1^{|M|}$. If $x \neq 1$, then $\varphi(x) = 1$ (from the definition of a Frobenious group). Let $|C^* \cap H| = a$ then $|C^*| = a|M|$. If $l \neq |x|$ then

$$\alpha_l = \frac{1}{l} \sum_{i/l} \varphi(x^{l/i}) \mu(i) = \frac{1}{l} \sum_{i/l} \mu(i) = 0,$$

since $\varphi(x^{l/i}) = 1$, for $i \neq 1$ and also $\sum_{i/l} \mu(i) = 0$ if $l \neq 1$ from Theorem 2.5.

If l = |x|, we have

$$\alpha_l = \frac{1}{l} \sum_{i/l} \varphi(x^{l/i}) \mu(i) = \frac{1}{l} \left[|M| + \sum_{i/l} \mu(i), \ i \neq 1 \right]$$

since $x \neq 1$ and $i \neq 1$ implies $l \neq 1$ and $\sum_{i/l} \mu(l) = \mu(1) + \sum_{i/l} \mu(i), i \neq 1$.

But
$$\mu(1) = 1$$
 and $\sum_{i/l} \mu(l) = 0$, $l \neq 1$. Therefore $\sum_{i/l} \mu(i) = -1$, $i \neq 1$ and thus

 $\alpha_i = \frac{1}{l} [|M| - 1].$ So $\alpha_{|x|} = \frac{|M| - 1}{|x|}$ and $\operatorname{mon}(x) = t_1 t_{|x|}^{(|M| - 1)/|x|}$. We conclude that since H has distinct conjugates which intersect trivially i.e at 1, the contribution of element of $G/M = \bigcup \{H^x \setminus I : x \in G\}$ to Z_G is

$$|G|^{-1} \left[|M| \sum \{ \operatorname{mon}(x) : x \neq 1 \in H \} \right]$$

= $|G|^{-1} \left[|M| \sum \{ \operatorname{mon}(x) : x \in H \} - |M| t_1^{|M|} \right]$
= $|G|^{-1} \left[|M| \sum \{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \} - |M| t_1^{|M|} \right]$
= $\frac{|M|}{|G|} \sum \{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \} - \frac{|M|}{|G|} t_1^{|M|}.$

But $\frac{|G|}{|H|} = |M|$ which implies $\frac{|M|}{|G|} = \frac{1}{|H|} = |H|^{-1}$. This gives $|H|^{-1} \sum \left\{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \right\} - |H|^{-1} t_1^{|M|}.$

Combining Case I and Cases II gives

342

$$Z_{G,M=S} = |G|^{-1} \sum \left\{ t_{|x|}^{|M|/|x|} : x \in M \right\} + |H|^{-1} \sum \left\{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \right\} - |H|^{-1} t_1^{|M|}.$$

If our aim is to express the cycle index of Frobenius group G in terms of the cycle index of M and H then we have

$$Z_{G,M=S} = |G|^{-1} \sum \left\{ t_{|x|}^{|M|/|x|} : x \in M \right\} + |H|^{-1} \sum \left\{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \right\} - |H|^{-1} t_1^{|M|}.$$

 But

$$|G|^{-1} = \frac{1}{|H||M|}$$
 and $Z_{M,S} = \frac{1}{|M|} \sum \left\{ t_{|x|}^{|M|/|x|} : x \in M \right\}$

Therefore

$$Z_{G,S} = \frac{1}{|H||M|} \sum \left\{ t_{|x|}^{|M|/|x|} : x \in M \right\} + |H|^{-1} \sum \left\{ t_1 t_{|x|}^{(|M|-1)/|x|} : x \in H \right\} - |H|^{-1} t_1^{|M|},$$

and

$$Z_{G,S} = |H|^{-1} Z_{M,S} + Z_{H,S} - |H|^{-1} Z_{1,S}$$

References

- A. Cayley, On the mathematical theory of isomers, *Philos*, 47, No. 4 (1874), 444-446.
- [2] N.G. De Bruijn, D.A. Klarner, Enumeration of generalized graphs, Koninkl. Nederl Akademia van Wetenschappen, Proceedings Series A, 72, No. 1 (1969), 1-9.
- [3] J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley (1971).
- [4] F. Harary, E. Palmer, Power group enumeration theorem, J. Combinatorial Theory, 1 (1966), 157-173.
- [5] F. Harary, Applications of Polya's theorem to permutation groups (1967).
- [6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford, Calendar Press (1983).
- [7] M.A. Harrison, R.G. High, On the cycle index of a product of permutation groups, J. Combinatorial Theory, 4 (1968), 277-299.

- [8] I.N. Kamuti, Combinational Formulas, Invariant and Structures, Associated with Primitive Permutation Representations of PSL(2,q) and PGL(2,q), Ph.D. Thesis, University of Southhampton, U. K. (1992).
- [9] I.N. Kamuti, J.O. Obong'o, The derivation of cycle index of $S_n^{[3]}$, Quaestiones Mathematicae, **25** (2002), 437-444.
- [10] I.N. Kamuti, L.N. Njuguna, On the cycle index of the reduced ordered r-group, East African Journal of Physical Sciences, 5, No. 2 (2004); 99-108.
- [11] I.N. Kamuti, On the cycle index of Frobenius groups, East African Journal of Physical Sciences, 5, No. 2 (2004), 81-84.
- [12] V. Krishnamurthy, Combinatorics: Theory and Application, Affiliated East-West Press, New Delhi (1985).
- [13] J.S. Rose, A Course on Group Theory, Cambridge University Press, Cambridge (1978).

344